

Item Response Models for Translation in CNS disorders

Mats O Karlsson and Sebastian Ueckert

Pharmacometric Research Group Department of Pharmaceutical Biosciences Uppsala University Uppsala, Sweden

Composite endpoints

Alzheimer's Disease Parkinson's Disease **Multiple Sclerosis** Alzheimer's Disease Assessment Movement Disorder Society - Unified Kurtzke Expanded Disability Parkinson's disease rating scale Scale - Cognition Status Scale (MDS-UPDRS) (EDSS) (ADAS-Cog) Bowl&Bladder Non-motor experiences Tasks Brainstem Mental Motor Pyramidal experiences Wordbased Cerebellar Motor Sensory examinations Rater Visual assessed Complications Ambulation&Aid **Decision Tree** Sum Sum

Models describe change in composite endpoints over time

Composite endpoints & pharmacometric modeling

- From intuition:
 - Scores are interpreted as measure of ability
 - Mathematical ability can't be observed and is clearly hypothetical
 - Exam itself is of no particular interest, but acts a surrogate measure for ability

ICCs in a near-perfect composite scale

ICCs ADAS-Cog

ICCs ADAS-Cog construction

IRT & Pharmacometric Modeling

IRT Model

Pharmacometric Disease Progression Model

specific

specific

Example: Alzheimer's Disease

- + Utilize data from public or in-house clinical trial databases
- Study influence of patient population + & assessment variant independent from another

Reference: Ueckert et al. Pharm Res 31(2013)

Example: Multiple Sclerosis (2)

References:

Novakovic et al. AAPSJ (2016) Novakovic et al PAGE (2017)

Sample size assessment

Expected increase in sample size needed for 80% power with total score over IRT

800

Buatois et al. Pharm Res (2017) Schindler et al, PAGE (2016) Ueckert et al. Pharm Res 31 (2013)

Item information

ITEM	Information	% Total Inf.
Cerebellar	2.18	33.98
Pyramidal	1.62	25.28
AmbAid	70 1.14	17.8
Bowel&Bladder	0.45	7
Brainstem	0.37	5.81
Cerebral	0.29	4.54
Sensory	0.28	4.39
Visual	0.08	1.21

Component	Information	% Total
1 Delayed Word Recall	4.79	33.6
2 Word Recall	3.81	26.7
3 Orientation	0/ 1.64	11.5
4 Word Recogniti	0 1.40	9.8
5Naming O&F	0.82	5.7
6 Number Cancellation	0.37	2.6
7 Construction	0.29	2.0
8 Word Finding	0.20	1.4
9 Ideational Praxis	0.18	1.3
10 Concentration	0.18	1.2
11 Remembering	0.16	1.1
12Comprehension	0.16	1.1
13Commands	0.15	1.1
14 Spoken Language	0.10	0.7

Reduced tests options:

- Screening
- Trial conduct with limited tests
- Trial conduct with individualized dynamic testing
 - tests administered to maximize information with few items items can be selected to minimize learning effects tests can be administered more frequently (device-based)

Example: Schizophrenia

+ Possibility to characterize different disease components in joint model

Figure 3 Longitudinal changes in disease state for typical individuals on placebo treatment (dotted lines) and paliperidone treatment (solid lines) for the positive (blue), negative (green), and general (red) subscale, according to our model.

Reference:

Krekels et al. CPT:PSP (2017)

References:

Buatois et al. PAGE 24 (2015) Abstr 3417 Buatois et al. PAGE 25 (2016) Abstr 5865

Example: Parkinson's Disease

- + Possibility to characterize and identify different drug effects for different components of the assessment $D_v(t) = D_v^0 + \alpha_v \cdot t + S_v(t)$ $S_{Motor}(t) = E_M^0 + \beta_M \cdot (1 - e^{-k_{eq} \cdot t_d})$ $S_{Tremor}(t) = E_T^0 + \beta_T \cdot t_d$ $S_{N-motor}(t) = E_{NM}^0$
- + Possibility to maximize power to detect drug effect by choosing subset

Example: Parkinson's Disease (2)

Jönsson et al PAGE (2017) Abstr 7236

- Model links established (UPDRS) and novel endpoint (MDS-UPDRS)
 - + Leverage historic data
 - + Comparison with older compounds
 - + Joint framework for complete disease severity range
- + Also done in AD for MMSE (often used for screening & diagnosis) & ADAS-cog (regulatory accepted endpoint)
 - + Utilize all collected data
 - + Leverage clinical routine data
 - + Predict clinical endpoint from screening

Parkinson's Disease

• Parkinson Progression Markers Initiative (PPMI) Database:

UPPSALA UNIVERSITET

IRM-based diagnosis

IRT – challenges

• IRT analysis complex

- Increasing community experience

• IRT model data demanding

-#Items and #Observations can't be too low

-Literature models can be used for ICC

• IRT model assumption dependent

-Assumptions can be assessed through diagnostics

• Software limitations for IRT analysis

-NONMEM/STAN flexible but offer few built-in facilitations

-SAS/R has useful functions but restrictive in model scope

Outlook

Plan		Analyze	Plan			
	POC			Phase III		
Leverage more existing data (across compounds, populations, endpoints) Select more specific patient populations Choose more informative endpoints		Infer with higher power Understand with increased detail	Design more precisely (for regulatory accepted endpoint) Decide with increased confidence			
Pharmacometric IRT Model						

Outlook

	Enroll & run	Interim analysis	Final analysis			
Phase III						
	Inclusion criteria component Dynamic selection of tasks during trial	Futility analysis Adaptive design (drop arm, revision of sample size)	E-R analysis Benefit-risk Disease-modifying effect Biomarker validation			
Pharmacometric IRT Model						

Conclusions

- Composite assessment data is complex
- Simplification results in loss of information
- IRT allows to capture data complexity
- Combination with pharmacometric modeling yields
 - Higher sensitivity and flexibility to detect drug effect
 - Integrated framework to link different endpoints and populations
 - More precise and versatile trial design

. . .